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A Lagrangian framework is used for analysing reactive solute transport by a steady 
random velocity field, which is associated with flow through a heterogeneous porous 
formation. The reaction considered is kinetically controlled sorption-desorption. 
Transport is quantified by the expected values of spatial and temporal moments that 
are derived as functions of the non-reactive moments and a distribution function which 
characterizes sorption kinetics. Thus the results of this study generalize the previously 
obtained results for transport of non-reactive solutes in heterogeneous formations 
(Dagan 1984; Dagan et al. 1992). The results are illustrated for first-order linear 
sorption reactions. The general effect of sorption is to retard the solute movement. For 
short time, the transport process coincides with a non-reactive case, whereas for large 
time sorption is in equilibrium and solute is simply retarded by a factor R = 1 +Kd, 
where Kd is the partitioning coeficient. Within these limits, the interaction between the 
heterogeneity and kinetics yields characteristic nonlinearities in the first three spatial 
moments. Asymmetry in the spatial solute distribution is a typical kinetic effect. 
Critical parameters that control sorptive transport asymptotically are the ratio E, 

between a typical reaction length and the longitudinal effective (non-reactive) 
dispersivity, and Kd. The asymptotic effective dispersivity for equilibrium conditions is 
derived as a function of parameters E ,  and Kd. A qualitative agreement with field data 
is illustrated for the zero- and first-order spatial moments. 

1. Introduction 
Most subsurface formations exhibit significant and seemingly erratic spatial 

variability in their hydraulic properties. For a given constant average hydraulic 
gradient, heterogeneity of hydraulic properties of aquifers determines heterogeneity of 
the fluid seepage velocity by which dissolved contaminants are advected. In turn, 
variations in the fluid velocity control field-scale dispersion of non-reactive 
(conservative) solute that is frequently several orders of magnitude greater than the 
pore-scale dispersion and molecular diffusion (Dagan 1987, 1989). 

Transport of non-reactive solute by random velocity fields in heterogeneous 
formations has been considered in several theoretical studies (e.g. Dagan 1982, 1984; 
Gelhar & Axness 1983; Neuman, Winter & Newman 1987; Neuman 1993; Shapiro & 
Cvetkovic 1988; Rubin 1990; Dagan, Cvetkovic & Shapiro 1992). In particular, the 
first and second moments of the solute spatial distribution were related to the statistics 
of the hydraulic conductivity under ergodic conditions for non-Fickian and Fickian 
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regimes (Dagan 1982, 1984). Furthermore, the expected values of spatial moments of 
non-reactive solute plumes have been related to the solute source size for non-ergodic 
transport (Dagan 1984, 1990, 1991). Experimental data from two comprehensive field 
investigations conducted and reported in the literature to date (Borden site, Ontario, 
Canada, and Cape Cod site, Cape Cod, Mass. - Freyberg 1986; Hess, Wolf & Celia 
1992), as well as results from numerial simulation (Bellin, Salandin & Rinaldo 1992; 
Chin & Wang 1992) compare favourably with the theoretical results of Dagan (1984). 

Many subsurface contaminants of practical interest, however, are not conservative 
and undergo some type of reaction, the most common being sorption. Whereas 
random spatial variability in solute advection enhances contaminant spreading, 
sorption reactions tend to retard (or delay) solute movement; thus their role is often 
critical when assessing the potential impact of contaminants in the subsurface (Weber, 
McGinley & Katz 1991). 

Sorption reactions are due to chemical and/or physical processes and imply an 
exchange of solute mass between the mobile fluid and immobile regions existing in the 
porous medium on different scales (Brusseau & Rao 1989; Weber et al. 1991; Sardin 
et al. 1991). In particular, solid grains constitute an immobile solid phase on the pore 
scale, onto which solute is (ad)sorbed by chemical reactions (e.g. ion-exchange). On the 
laboratory scale (lO-'-lOo M) and larger, regions of essentially stagnant fluid are found 
(e.g. intra-aggregate porosity, low-conductivity lenses) ; these regions constitute an 
immobile fluid phase. Owing to concentration gradients, solute mass is transferred 
between the mobile and immobile fluid phase by Fickian diffusion; this is referred to 
as physical sorption, or mass transfer. 

The rate of mass transfer has a timescale whose ratio to a typical advection timescale 
constitutes an important parameter characterizing transport. A large mass transfer rate 
implies fast reactions that can be approximated as equilibrium. For low mass transfer 
rates, the reactions are rate-limiting (slow), and the kinetics of sorption is significant. 
The chemical sorption reactions can be either fast or rate-limiting, whereas physical 
mass transfer is generally rate-limiting. 

It has been common in engineering applications to assume that sorption reactions 
are sufficiently fast such that equilibrium conditions prevail. Several recent theoretical 
studies have been focused on equilibrium sorption (Kabala & Sposito 1991; 
Chrysikopoulos, Kitanidis & Roberts 1992). Mounting evidence from both field and 
laboratory investigations indicates, however, that on the field-sale sorption rates are 
lower than generally assumed and that kinetic effects may be significant (Nkedi-Kizza 
et al. 1983; Miller & Weber 1986; Roberts, Goltz & Mackay 1986; Goltz & Roberts 
1986; Ptacek & Gillham 1992). This is particularly true for transport in fractured 
formations (Knapp 1989). 

Analytical solutions for transport that couple advection with kinetically controlled 
sorption in heterogeneous aquifers are limited in number. Deterministic solutions for 
either concentration or for the moments of the solute spatial distribution have been 
discussed for homogeneous porous media by van Genuchten & Wierenga (1976), 
Valocchi (1985) and Goltz & Roberts (1986, 1987). Transport of kinetically sorbing 
solute in aquifers of simple heterogeneity (stratifications) has also been addressed 
(Valocchi 1989; Andricevic & Foufoula-Georgiou 1991). The mass flux of sorptive 
solute in heterogeneous aquifers has been considered using a stochastic analytical 
model (Cvetkovic & Shapiro 1990), and also using a semianalytical approach (Selroos 
& Cvetkovic 1992). 

In this paper, kinetically controlled sorption reactions are coupled with solute 
advection by a random steady velocity field. Large-scale transport is quantified by the 
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expected values of spatial and temporal moments that are derived as functions of the 
non-reactive moments and a distribution function which characterizes sorption 
kinetics. This distribution function is obtained as a solution of one-dimensional mass 
balance equations for the mobile and immobile solute where the independent variables 
are time and the travel time of non-reactive solute along a streamline (streamtube). 
Results are illustrated for transport of solute subject to rate-limiting sorption in three- 
dimensional, heterogeneous and statistically isotropic aquifers. Asymptotic results are 
derived where the apparent dispersivity for sorptive solute is expressed as a function of 
the non-reactive dispersivity (Dagan 1984), and sorption rate coefficients. The results 
have recently been extended to heterogeneous formations of anisotropic structures 
(Dagan & Cvetkovic 1993). 

2. Problem description 
We consider fluid flow through heterogeneous porous formations with spatially 

variable hydraulic properties, such as hydraulic conductivity, K(x) ,  and porosity, n(x), 
where x(x,,.xl, x,) is a Cartesian coordinate vector. The seemingly erratic variations of 
the hydraulic properties on the one hand, and the uncertainty stemming from scarcity 
of measurements on the other, are set in a rational framework by regarding the 
hydraulic properties as random space functions (RSF). 

The fluid seepage velocity V( V,, V,, V,) satisfies the continuity equation V - (n V )  = 0, 
and is related to K, n and to the hydraulic head Q, through Darcy’s law V = -(K/n) 
VQ,. Hence V is in turn an RSF which may also depend on time. We assume here that 
V is given in a statistical sense, and, below, we shall employ pertinent results derived 
in the past. To simplify matters, we limit the study to a time-independent and 
statistically stationary V, and without loss of generality the mean flow is taken in the 
direction xl. 

Let a reactive solute of mass M ,  be injected into the flow field V(x)  at time to within 
a volume %. The governing equations of solute mass balance on the Darcy scale have 
the form 

ac aN ac i3N 
n - + V . q  = -n- i.e. -+ V - V C  = --, 

at at ’ at at 
(2.1 a) 

F(aN/at, N ,  C )  = 0, (2.1 b) 

where C is the solute concentration in the fluid (mobile) phase, and N is the solute 
concentration (per unit fluid volume) that has been sorbed or transferred onto the solid 
(or immobile) phase, q = nCV is the advective mass flux, and t is time. The function 
F i n  (2.1 b) is a general expression for sorption kinetics that relates aN/at to C and N 
in a deterministic manner. The limiting case are equilibrium sorption reactions for 
which (2.1 b) reduces to F(C, N )  = 0. 

Equations (2.1) couple two important processes of field-scale contaminant transport : 
(i) solute advection by the random velocity field, CV, and (ii) resistances to solute 
advection due to rate-limiting (kinetic) mass transfer from the mobile to the immobile 
regions of the flow. In (2.1) only reversible sorption is accounted for; irreversible mass 
transfer (i.e. mass loss due to degradation, or decay) may be accounted for by adding 
a sink term in (2.1 a). The mass transfer from the mobile to the immobile regions occurs 
because of chemical and/or physical processes. In most cases of practical interest, 
however, the rate-limiting mass transfer due to physical and chemical processes will 
be indistinguishable on the field scale (e.g. Brusseau & Rao 1989), and is therefore 
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regarded as a single process. The direct effect of pore-scale dispersion and molecular 
diffusion, which was neglected in (2.1), is discussed in $7;  the indirect effect of 
molecular diffusion through mass transfer is accounted for in the kinetics of (2.1). 

Owing to the random nature of V(x) ,  solute concentrations, C and N in (2.1), are 
also random functions. The expected value of concentration, (C), can be represented 
in terms of the expected values of the moments of the solute spatial distribution that 
are related to the statistics of the Eulerian field V(x) .  An alternative representation of 
transport is by means of the mass flux, q. The expected mass flux over a control surface 
can be determined from expected temporal (travel time) moments that are related to 
the statistics of V.  The representations of transport with the expected concentration 
and the expected mass flux can be related in special cases, such as for diffusion 
processes. In the general case, these two representations are independent and are both 
of interest for practical applications (Simmons 1982; Dagan et al. 1992). 

In the following Sections, we adopt the Lagrangian approach to analyse the expected 
spatial and temporal moments of the mobile solute, as means of quantifying field-scale 
transport of kinetically sorbing solute. 

3. Lagrangian formulation of transport 
3.1. Kinematical preliminaries 

The starting point of the Lagrangian approach is the Eulerian velocity field, V(x) ,  that 
is determined through Darcy’s law from the pressure distribution. The vector equation 
of the fluid particle trajectory is x = X( t ;  to, a), where x = a is the initial coordinate at 
t = to, i.e. X(to;  to, a) = a. Steady flows are characterized by X ( t ;  to, a)  = X( t -  to;  a), 
where the X have to be determined from the differential system dX/dt = V(X) ,  with 
X(t , ;a)  = a. 

An alternative parametrization of the trajectories that is particularly useful in the 
present context is obtained first by inverting the relationship x1 = X,(t - to.; a) to yield 
t - to = ~(x, ; a). It is seen that 7 is the travel time of a fluid particle from the initial plane 
at x1 = a, to the plane at x1 (we shall denominate this plane as CP, the control plane, 
following the nomenclature of Dagan et al. 1992). We assume that the mean flow is in 
the x, direction and that 7 is positive and finite, i.e. all fluid particles cross the CP at 
one time or another. 

Substituting t - t? = 7(x1; a) into the expressions for the transverse displacements X ,  
and X,, we obtain ~(x,; a) = X,(T; a) and <(xl; a) = X3(7; a) (figure 1). Since 
dt = (dT/dx,) dx,, it follows that 7 , ~  and 5 satisfy the differential system (Dagan et al. 
1992) 

with initial conditions 7 = 0, 7 = a, and 5 = a3 for x, = a,. Hence, x2 = 7(x1; a) and 
x, = [(x,; a) are simply the equations of the streamlines of the steady velocity field. The 
important feature of representation (3.1) is that the transverse coordinates 7 and 5 can 
be determined from the velocity field independent of 7. Furthermore, the inequality 
X ,  > x, implies a fluid particle that has moved beyond the CP, and is equivalent to 
t - to > 7. This can be expressed as H(t - to - 7) = 1 - H(x,  - X,), differentiation of 
which with respect to t yields 

where H is the Heaviside step function, and 6 is the Dirac delta function. 
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FIGURE 1. Definition sketch of a streamtube. 

We consider now an infinitesimal streamtube (figure 1) originating from the plane 
x, = a,  and of cross-sectional area AA, = AazAa3. Assuming that the fluid moving 
through AA, during an infinitesimal time At, is tagged, the marked particle volume is 
given by A 6  = no Aa, Aaz Aa where Aal = V, At,; for briefness, we have set no = n(a) 
and V, = y(a). The Lagrangian statement of fluid continuity is as follows: 

3.’ 

A 6  = A V ,  i.e. no Aa, Aaz Aa3 = n AXs AX, AX,. (3.3) 

The usual Eulerian statement of continuity is no V, AA, = n y(xs, AA, which is 
obtained by dividing (3.3) by At = At,. The latter equality results from the 
differentiation of t - t ,  = 7(xs; a) for fixed x1 and a. The fluid particle volume can 
therefore be expressed as follows : 

A V  = A 6  = no V, AA, At, = nV;(xl, T , I , ~  AA At. (3.4) 

The above convenient relationships will be used in the developments below. 

3.2. Concentration and mass j u x  
3.2.1. Non-reactive solute 

Let C(x, t )  define the concentration (or the resident concentration in the terminology 
suggested by Kreft & Zuber 1978), as mass of solute per volume of fluid; the 
conservation of mass is expressed with the aid of (3.3) as 

Am = Am,,, i.e. Am, = nC(X, t )  A X  = n, C,(a) Aa, (3.5) 

where Aa = Aal Aaz Aa3, and similarly for AX.  Let AC(x, t )  be equal to C for x E A X  
and equal to zero outside AX.  Then, for AX+O, (3.5) leads to 

1 1 1  1 S ( t - t o - 7 )  
AC = -Am,-+-Am,S(x-X)  = -Am, S(x2 - 7) S(x3 - 02 (3.6) 

n A X  n y(x17730 

where we have employed (3.2) and the definition of 7, preceding (3.1). Equation (3.6) 
in the form AC = (Am,/n) S(x - X )  was the starting point of Dagan (1982, 1984) and 
will be used subsequently. 
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An alternative representation of transport is in terms of the solute flux 

d x , ,  'I, 5 , t )  = n K(x1, 'I, 0 a,> 'I,5, 0,  
defined as mass of solute per unit area and unit time at a point on the CP. Defining 
again Aq = q for points within AA = Ay A5 in the CP and for r < t - t,, < 7 + A t ,  while 
Aq = 0 outside AA,At ,  we may write, using (3.4) or (3.6), 

+Am,S(x , -~)S(x3-QD(t - t , , -7 ) .  
1 

Aq = Amo- 
AA At (3.7) 

The latter definition in (3.7) was the starting point of the analysis of transport in 
terms of the flux by Dagan et al. (1992) and Cvetkovic, Shapiro & Dagan (1992). 
Integration of Aq over 7 and 5 yields AQ, the solute flux through the entire CP, for an 
instantaneous injection of duration At,, + 0. This was used previously by Shapiro & 
Cvetkovic (1988). Furthermore, the total solute flux Q, divided by the total fluid flux, 
may be used for defining the flux-averaged concentration (Kreft & Zuber 1978). In the 
terminology of Kreft & Zuber (1978), the representation with the aid of the resident, 
or flux-averaged concentration at the CP, are detection modes. We may also use the 
resident concentration or solute flux representations at the inlet plane x, = a,, referred 
to as injection modes (Kreft & Zuber 1978). This distinction is achieved by replacing 
in (3.6) or (3.7) Am,, by no C,, Aa or by q,, AA,, Ato, respectively. Here C,, = C(a, to) is the 
initial concentration whereas q,, = q(a, to) is the initial solute flux. If injection takes 
place at constant concentration, q,, = C,, V, is no longer constant since V, is spatially 
variable. This issue is discussed in our work in progress about continuously injected 
plumes. 

3.2.2. Reactive solute 
Here we wish to relate C in (2.1) to the Lagrangian variables Xi ( i  = 1,2,3), or 

7,7, 5 that have been employed for representing transport of conservative solutes. At 
first glance this is not plausible, since following solute particles was equivalent to 
following fluid particles in motion, whereas in the present case part of the solute mass 
is immobilized. This apparent difficulty can be overcome by transferring (2.1) to a 
coordinate system ( E l ,  &, t3) attached to streamlines and defined as follows: 

6 1 ( X ; a )  = t 2 ( x ; a )  = X z - T ( X 1 ; a ) ;  t 3 ( X ; R )  = x 3 - [ ( x 1 ; a ) *  (3.8) 

The equation satisfied by C(<, t )  and N(<, t )  is obtained from (2.1) using (3.8) and (3.1) 
as 

where v = V,(x)/  V,(x,, 7,Q. 
For x, = 7 and x3 = 6, i.e. along the streamline t2 = 6, = 0, (3.9) reduces to 

(3.10) 

where C(&, 0, 0, t )  and iv(tl, 0, 0, t )  are functions of two variables only. We solve (3.10) 
for instantaneous injection of solute in the mobile phase of concentration Co during a 
time interval At,, at x, = a,, i.e. at 6, = 0. At the same injection site we assume that 
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N(O,O, 0,  t )  = 0, while the initial conditions are C = 0, N = 0 for 5, > 0, t = to. With 
At, + 0, the boundary and initial conditions become 

AC(0, 0, 0, t )  = C,(U, to)  S(t - to) At, ; N(0, 0, 0, t )  = 0. (3.11) 

The solution of (3.10) with initial conditions (3.11) is the same as that of one- 
dimensional flow of unit velocity. Such a system has been the object of earlier studies 
and solutions are available for several types of sorption reactions. We shall write the 
solution in the general form 

AC(5,, 0, 0, t )  = C,(a, t o )  y( t -  to, 7 )  4, (3.12) 

thereby restricting our present discussion to processes where AC is linear in the initial 
concentration C,. The form of the function y depends on the particular process that 
was represented in a general form by (2.1 b). Thus, y is derived explicitly in 0 5 for linear 
kinetics. If the reaction is nonlinear, y may depend on C, and the initial concentration, 
and the manner in which the present analysis applies the results for a solute particle to 
a finite plume need to be modified. In the simplest case of a conservative solute, the 
solution of (3.10) with N = 0 is y( t  - to, T )  = S(t - to - T) ,  i.e. the solute particle crosses 
the CP at t = to+7, as does the fluid particle. 

Because we are interested in finite initial input zones, we consider now an 
infinitesimal fluid streamtube entering AA, at x = a (figure 1). We wish to express the 
concentration field AC, (3.12), in terms of the initial solute mass Am,, attached to a fluid 
particle of volume A%, (3.4), at x = a, t = to while AC = 0 elsewhere. Since by (3.4) 
Amo = CoA% = no K A A ,  C,At,, substitution in (3.12) yields 

i.e. 

With AA + 0 and since AC = 0 outside the streamtube, one has 

1 / A A  + S ( X ,  - 7) S ( X ,  - 3>. 

Hence, AC can be written in the following final form: 

(3.13 b) 

(3.14) 

where the dependence on a in the right-hand side of (3.14) is due to that of 7 , 7 ,  < on 
a as well of Amo. 

The solute flux Aq(t l ,  O,O, t )  = nV(x l ,  7, 0 AC is obtained from (3.14) as follows : 

Aq(x, t - to; a) = Am,(a, t )  Y(T,  t - to) S(x, - 7) S(x, - 0. (3.15) 

Equations (3.14) and (3.15) constitute the generalization of (3.6) and (3.7), 
respectively, to reactive solute. For conservative solute, y(7, t )  = S( t -7)  and with the 
aid of (3.2), (3.14) and (3.15) reduce to (3.6) and (3.7), respectively. Whereas for a 
conservative solute the mass is attached to the fluid particle, y ( ~ ,  t )  quantifies a trailing 
solute plume behind the fluid particle located at x = X ( t -  to; a) or equivalently at 
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7(x1; a) = t - to, x2 = 7(xl; a), x, = <(xl; a). Thus the reaction induces a distribution of 
the solute along the fluid streamline, but not across it. Matters are different if 
transverse diffusion is accounted for or if the fluid flow is unsteady. These cases are not 
considered at present. 

Finally, the two injection modes can be expressed with the aid of (3.14) or (3.15) by 
substituting Am, = Co(a) da (to = 0), or Am, = qO(a, to) At, for instantaneous resident 
concentration, or rate of inflow, respectively. 

4. Expected spatial and temporal moments 

which are random variables depending on t and x, respectively. 
We characterize a solute plume of finite volume by its spatial and temporal moments, 

4.1. Spatial moments 

The concentration field, C, for instantaneous injection of reactive solute into the finite 
volume % at to = 0, is obtained by integrating AC (3.14) over 6. The result is 

For non-reactive solute, y(7, t )  = 6(t-7), and (4.1) reduces by virtue of (3.2) to 

C(x, t )  = - no C,(a) 6(x - X )  da 
n 's 

which has been used in several previous studies (Dagan 1984, 1990) for investigating 
transport. 

The spatial moments of the solute plume with respect to the origin are defined from 
(4.1) as 

since y(t,7) = 0 for x1 < a, (no backward reaction). The key to evaluating (4.2) is to 
exchange the variable x, with 7 using (3.1) to obtain 

where we account for the definition of 7,  7 , 6  preceding (3.1), i.e. x1 = X,, 7 = X, and 

Because the fluid velocity, V(x), is assumed to be a stationary, random field, the 
kinematic variables X ,  and thereby the spatial moments, ,urn,,, are random. For 
simplicity, we shall assume C,(a) to be deterministic, implying that the zero-order 
moment, pooo, is deterministic. In the following, we wish to evaluate the statistical 
moments of the first three central spatial moments that are defined from prnnr. 
Although the following analysis may be used for evaluating statistical moments of 
different order, we restrict the present discussion to the expected values only. 
Furthermore, we shall assume that the ergodic hypothesis is obeyed for ,urnlzr, a topic 
recently discussed for non-reactive solute by Dagan (1991). This requirement is ensured 
if % is of large extent compared to the velocity covariance integral scales. 

g = x,. 
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Let rp denote auxiliary functions defined as 

r p ( t )  = TPy(t, 7) dr, S: (4.4) 

which depend on the particular type of reaction. The solute mass in the mobile phase, 
i.e. the zero-order moment, is obtained by setting m = n = r = 0 in (4.3) as 

M(t) = Moro( t ) ;  Mo = noCo(a)da, 1% (4.5) 

while the mass in the immobile phase is given by Mo - M(t). For a conservative solute, 
rp = tP, which is also the limit of rp for t+O. Moreover, since r, is positive, M 
decreases from Mo at t = 0 to a smaller value, whereby the immobilized mass increases. 

Next, the centroid coordinate R is obtained by taking one of the indices m,n or r 
equal to unity in (4.3), and normalizing by M (4.5) as follows: 

R(t)  = - nxC(x, t )  dx = - S s; no Co(a) X(T; a) y(t, 7) d7da. (4.6) 
M ' S  More % 0 

For a random velocity field of mean U( U, 0,O) and for ergodic R, we get for the 
ensemble mean 

(R,(t))  = R,(O)+ ur,/ro; (R,) = R,(O), (R3) = R3(O), (4.7) 

where R,(O) is the deterministic initial centroid coordinate. Equation (4.7) is obtained 
using the result (X) = a +  Ut (Dagan 1984) in (4.6). 

The second central moment is defined as 

nC(x,- (R,))(x,- (R,)) 

Substituting X = a + Ut + X' ,  where X is the fluctuation of X ,  we get for the expected 
transverse moments, from (4.7), (4.4) and (4.3), 

(Sii(t)) = Xij(7)y( t ,7)d7 (i,j  = 2,3), (4.9) 

and for the expected longitudinal moment 

where Xii = (XiX;) is the variance-covariance tensor of X .  Equation (4.10) 
encapsulates one of the main results of this study, expressing the reactive spatial 
variance as a function of the non-reactive spatial variance and the reaction-dependent 
coefficients r,. Analytical expressions for Xii as function of the hydraulic conductivity 
statistics have been obtained by Dagan (1982, 1984) assuming flow in unbounded 
domains; these expressions are to be defined and used in 96. 

The first term of (4.10), S,,(O) = (l/Mo)Ja: Coda, is the initial second moment of 
the plume. The second and third terms in (4.10) exist for deterministic and uniform 
velocity fields and represent the spread of the solute due to mass transfer to the 
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immobile phase. The last term in (4.10) is of major interest, since it couples the effects 
of velocity randomness and sorption. For a conservative solute, i.e. for y(t, 7) = 8(t -7) 

and r, = tP, (4.7)-(4.9) degenerate into familiar forms for non-reactive solute (Dagan 
1984). 

Finally, the longitudinal third central moment for reactive solute is given by 

(4.11) 

where we assume ( X i 3 )  = 0 (Dagan 1984). 

4.2. Temporal moments 
We compute here the temporal moments at a fixed control plane at x,. Integrating first 
Aq, (3.15), over the CP, we obtain 

AQ(xl, t-to;a) = Amoy(t-to,7). (4.12) 

Further integration of (4.12) over the injection volume “y^o yields 

Q(x1, t - t o )  = no Cda) ~ [ t  - to, ; all da, (4.13) 

which is to be used for evaluating the expected temporal moments. As a preparatory 
step we define the auxiliary coefficients 

1% 
(4.14) 

Because of the random character of V(x) ,  7 is a random variable following (3.1). 
Hence, the computation of (7) in (4.14) requires knowledge of the probability density 
function of T .  For conservative solute, A ,  = (7,). 

The expected cumulative breakthrough curve that is identical to the actual one under 
the ergodic conditions, is defined by 

(M(x , ,  t))/M - - (Q(x,, t’) dt’ = - no Co(a) (y(t’, 7)) dadt’, (4.15) 
“-0 ‘s 0 -0 ss 0 “& 

with (M(x,,  oo))/Mo = 1 and for simplicity “y^o is a disk at the plane x, = a,. 

for the mean passage time 
The first three temporal moments can be evaluated from (4.13) using (4.14); we get 

<T(Xl)) = - t’( Q(xl, t’)) dt’ = Al. 

In a similar manner, we get for the second temporal moment 

(4.16) 

(4.17) 
2A2 A2 

(t’ - (T))’ ( Q(x,, t’)) dt’ = A,  ->+ 2. 
A0 A: 

( U x J )  = - 
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For conservative solute A,  = 1, A ,  = (7) and A ,  = g : + ( ~ ) ,  and (4.15)-(4.17) 
degenerate into expressions for conservative solute. Analytical expressions for (7) and 
.;" as function of the hydraulic conductivity statistics, have been obtained by Shapiro 
& Cvetkovic (1988) under conditions identical to those considered by Dagan (1982, 
1984). Equations (4.15), (4.16) and (4.17) generalize the results for conservative solutes 
to the case of reactive ones. 

5. Linear sorption reactions 
For evaluating the expected spatial and temporal moments as discussed in $4, the 

distribution function y, (3.12), is required. In this section, we find y for one important 
class of mass transfer (sorption) reactions, namely, for linear sorption, which has 
frequently been used for modelling reactive transport on both the field scale and in 
laboratory columns. 

Let e and I? denote the Laplace transforms of the mobile concentration, C, and the 
immobile concentration, N ,  respectively. The linear mass transfer models are defined 
such that the ratio I?/e is either a constant or a function of the Laplace transform 
variable, s (Villermaux 1974). Transforming the governing equation of mass balance 
(3.10) (with = T), we write for the linear sorption models 

d e  
dr 
-= -s(A+c); I?/e = W(s), 

where M(s) defines the mass transfer kinetics in the Laplace domain; the form of W(s) 
depends on the type of mass transfer process assumed. For instantaneous injection (see 
(3.11)) of unit mass, the Laplace transform of y (3.12), f, is obtained from (5.1) as 

f ( r ,  s) = exp { - s[ 1 + W(s)] 7). (5.2) 

Inversion of (5.2) for specific forms of W(s) yields the y that is to be used for evaluating 
the spatial and temporal moments. 

A special case of interest is when the mass transfer between mobile and immobile 
zones is sufficiently fast relative to the timescale of the transport problem such that 
equilibrium may be assumed. For equilibrium conditions, W(s) = const = Kd, where 
Kd is referred to as the mass partitioning coefficient, or the equilibrium distribution 
coefficient (e.g. Valocchi 1985). Inverting (5.2), for the equilibrium case we obtain 
y(r, t )  = S(t-rR), i.e. the advection of reactive solute is retarded relative to the 
advection of non-reactive solute by a factor R = 1 + Kd; the parameter R is referred to 
as the retardation factor. In the absence of reactions, W(s) = 0, and y( t , r )  = S(t--7). 

5.1. First-order rate model 
A number of different physical and chemical processes in porous media result in non- 
equilibrium mass transfer between mobile and immobile regions that can be described 
with the first-order rate model (Brusseau & Rao 1989; Weber et al. 1991; Sardin et al. 
199 1). The governing equations for advective transport coupled with the first-order 
rate of sorption are 

(5.3a) 

- k ,  C-  k ,  N -  k ,  N k,(Kd C- N )  - k, N ,  
aN 
-- 
at 

(5.3 b) 
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FIGURE 2. The distribution function y at K, = 1 for (a) first-order rate model ( 5 . 9 ,  
and (b) spherical diffusion model (5.8). 

where k,  and k ,  are the forward and backward rate coefficients, respectively, 
Kd = k,/k,, and where we have included linear irreversible mass transfer (degradation, 
or decay), with k,  being the decay rate. From the Laplace transform of (5.3b), W(s) is 
obtained as 

7, 

Ad W(s) = 
1 + s /k2  + k, /k ,  ' (5.4) 

For sufficiently large k ,  (with Kd remaining constant), (5.4) reduces to the linear 
equilibrium model, i.e. W(s) + Kd for k,  + co and k,  = 0. By appropriate scaling of k ,  
and k,, simultaneous linear equilibrium sorption may be introduced in (5.3), whereby 
the so-called two-site model is obtained (e.g. Cameron & Klute 1977). Thus (5.3) 
represents a relatively general model for linear sorption reactions that can incorporate 
equilibrium and non-equilibrium linear reversible mass transfer, as well as the 
irreversible linear mass loss (decay). 
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The function y is obtained for a pulse injection by inverting (5.2) with (5.4) (Lassey 
1988): 

y(7, t )  = exp [ - (k,  + k,) t] 8(t - 7) 

where &(Z) = Il(2Z9/Z4 with 1, being the modified Bessel function of the first kind 
of order one; the Laplace transform of y is given by (5.2) with W(s) defined in (5.4). 
Dimensionless y t  obtained from (5.5) is illustrated in figure 2(a)  as a function of 7 / t  
for three values of k, t for fixed Kd and for k,  = 0. Note that figure 2(a) illustrates the 
approximate spatial distribution of solute along the streamtube ; for a constant velocity 
field, the curves in figure 2(a) are proportional to the spatial distribution of solute. For 
large k, t --f 0 the reaction is not felt and y-f 8(t-7).  

5.2. Diflusion models 
For applications where the physical mass transfer processes are dominant, and where 
the regions of the immobile fluid are not well mixed, the first-order rate model may not 
be sufficient for describing the mass transfer. For such cases, mass transfer models have 
been developed that assume a specific idealized geometry of the immobile regions (e.g. 
spherical, cylindrical, rectangular) within which the mass transfer is governed by Fick's 
second law of diffusion. The idealized geometry of the immobile regions may represent 
grains, soil aggregates, low-permeability zones, or blocks of rock. The diffusion models 
have been used for describing mass transfer in soils (van Genuchten & Wierenga 1977; 
van Genuchten & Dalton 1986), aquifers (Goltz & Roberts 1986) and fractured 
formations (Neretnieks & Rasmuson 1984). 

The mass transfer equation (2.1 b)  for the diffusion models assuming three types of 
immobile geometry, are (Goltz & Roberts 1987) 

Equations (5.3) and (5.6) constitute a complete system of mass balance equations for 
the diffusion models. In (5.6), m = 1 for a rectangular, m = 2 for a cylindrical, and 
m = 3 for a spherical immobile region geometry, D is the diffusion coefficient of the 
sorbing solute in the immobile region, C* is the concentration at locations within the 
immobile region, and Kd is the solute capacity ratio of the immobile to mobile zones. 
The equation for N in (5.6) defines the volume-averaged immobile solute concentration, 
N,  in term of C*, while b represents a characteristic length of the immobile zone 
(radius, in the case of spherical or cylindrical geometry, and half-width in the case of 
rectangular geometry). The initial/boundary conditions applicable within the immobile 
region are 

C * ( r , 0 ; ~ )  = 0; C*(O,t;7) + C O ;  C*(b,t;7) = C(7,t). (5.7) 

The system of equations (5.3), (5.6) with (5.7) has been solved by Rosen (1952) for 
the spherical model (m = 3) with continuous injection. Differentiating the result of 
Rosen (1952, equation (26)) with respect to time, the function y is obtained as (with 
k, = 0) 
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where P = D/b2 characterizes the kinetics of mass transfer and corresponds to k, in the 
first-order rate model; the functions Hl and H, are defined as 

h(sinh 2h - sin 2h) 
-1; H,(h) = h(sinh 2h + sin 2h) 

H,(h) = 
( C O S ~  2h - cos 2h) (cash 2h - cos 2h) 

and are well approximated by Hl = A- 1, and H ,  = h for h > 10. Dimensionless y t  
obtained from (5.9) is illustrated in figure 2(b) as a function of 7 / t  for a few values of 
Pt. With the appropriate choice of the parameters k,, p and Kd, the first-order and the 
spherical diffusion models yield similar responses (figure 2). 

The function W(s) for the spherical diffusion model is (e.g. Goltz & Roberts 1987) 

where in is the modified spherical Bessel function of the first kind of order n, i.e. 
i,(z) = (7c/2z)fIn+~(z), with In+; being the modified Bessel function of the first kind of 
order n+& and where $ = ( s /D) f .  The Laplace transform of y (5.2) with W(s) defined 
in (5.9). 

The function W(s) for the cylindrical geometry of the immobile regions is defined as 
W(s) = 3Kd I l ~ b ) / p b I , v b ) ,  whereas for the rectangular geometry it is 

W(s) = Kd tanh v b ) / p b  

(Goltz & Roberts 1987). Following a similar methodology for Laplace inversion as that 
given by Rosen (1952), the y-functions can be determined for the cylindrical and 
rectangular geometry. 

The uniform and regular immobile-region geometry considered in the diffusion 
models is an overly simplified assumption for most field applications. However, these 
models capture the qualitative features of the rate-limiting, diffusion-controlled mass 
transfer, and as such have been used as an approximation even in formations where the 
geometry of the immobile regions is irregular and varying. For varying size of 
immobile zones, the characteristic length b is to be interpreted as an average, or 
effective value. 

6. Illustration example 
We consider solute transport in a three-dimensional, statistically isotropic hetero- 

geneous porous medium under flow conditions identical to the ones discussed by 
Dagan (1984). In particular, the porosity of the medium, n, is assumed constant, 
whereby the fluctuations in the steady-state velocity field, V,  are due solely to the 
spatial variability in the hydraulic conductivity, K = K(x). The hydraulic conductivity 
is assumed to be lognormally distributed, i.e. K(x)  = KG exp (Y(x)),  where KG is the 
geometric mean of K, and the distribution of Y is N(0, g”,. The covariance function for 
Y is hypothesized as a negative exponential, i.e. 

where I is the integral scale of Y. Without loss of generality, we assume that the mean 
hydraulic gradient is parallel to the xl-coordinate axis, i.e. J(J, 0,O); consequently, the 
mean flow is parallel to the x,-coordinate axis, i.e. U(U, 0,O). 

The controlling mechanism of the transport is assumed to be solute advection 
through the random flow field with simultaneous exchange of solute mass with the 
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immobile regions of the medium. We assume rate-limiting mass transfer that is due to 
chemical and/or physical processes, and can be described by the linear first-order rate 
model (5.3). 

In the following, we illustrate the effect of first-order linear sorption on solute 
transport. The effect of sorption kinetics on the expected first three moments of the 
spatial distribution (spatial moments) is illustrated in $6.1. The expected first three 
moments of reactive solute residence time (temporal moments) are illustrated in $6.2. 

6.1. Spatial moments 
The expected values of the first two spatial moments of a non-reacting solute advected 
in a three-dimensional, statistically isotropic heterogeneous porous medium are given 
by (Dagan 1982, 1984) 

(6.1) 
K G  J (XI) = Ut = -t; ( X , )  = ( X , )  = 0 n 

where ( X I )  is the mean displacement in the x,-direction, and Xi, are the variances in 
the three directions, with Xi, = 0 for i + j .  The dimensionless time is defined as 
t’ = t/t,, where t ,  = I / U  is a characteristic time of the formation heterogeneity. 
Equations (6.1) and (6.2) are first-order approximations in gZ,, implying that X is 
Gaussian and all the moments can be expressed with the aid of ( X , )  and Xi, (Dagan 
1984). 

In order to evaluate spatial moments for reactive solute, the T-functions (4.4) need 
to be determined. For y ( ~ , t )  defined in (5.5), the first four r-functions are, for 
k, = 0 (Appendix A), 

(6.3 a) T - - (1 + Kd ect”) 
1 

O - R  

(6.3 b)  

Kd 1 
R3 R R 

(1 - ect”) + (1 - Kd ect“) t” + (1 + K i  e-t“) t”’, (6.3 c) 6Kd(Kd- 1> r, = 

12Kd(Kd- 1) 1 
R3 R 

(1+ec~)+,[6(Kd-1)2-12Kd](1-KdeP”) r, = 

1 
R4 

t“ 
R4 

- - (Kd-  1)[6Kd-(Kd-1)2](1 +Kde-t”) 

+ - [24Kd(Kd - 1) (1 - ect”) + 12Ki( 1 + ect”)] 

+ ~ (1 - K i  ect”) t”’ + - (1 + K i  eP”) f3, (6.3d) 

where t” = t / t ,  is a dimensionless time and t, = (k ,  R)-l is a charcteristic reaction time. 
Inserting (6.1)-(6.3) into (4.7E(4.1 l), spatial moments for reactive solute are 

12Kd 1 
R4 R4 
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FIGURE 3(u-c). For caption see facing page. 
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FIGURE 3. Expected values of central spatial moments evaluated from (4.5)-(4.11) for different k ,  t ,  
and K, = k, /k ,  for uc = 1 :  (a) zero-order moment, (b) first-order moment, (c) second-order 
longitudinal moment, ( d )  coefficient of skewness, and (e) second-order transverse moment. 

evaluated and illustrated in figure 3 over the range 0 < t / t ,  < 10 for different values of 
a dimensionless sorption parameter k ,  t, and of Kd. The ratio between the characteristic 
times of the reaction and of heterogeneity is t J t ,  = U(k, IR)-', which for the selected 
values of k ,  t,  and Kd in figure 3 is in the range 0.25 < t,/t, < 5 ,  i.e. t J t ,  = O(1). Thus, 
the moments illustrated in figure 3 may be considered in the non-Fickian, non- 
equilibrium (kinetic) regime. 

The zero-order moment that quantifies immobilized mass is illustrated in figure 3 (a).  
The retardation of the reactive solute plume centroid compared to the non-reactive one 
is illustrated by the first spatial moment in figure 3(b). For small t/t,, the effect of 
retardation is small, i.e. all curves branch from the one for conservative solute. At large 
t/t,, the effect is retardation at a constant rate R (asymptotic cases are to be discussed 
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subsequently). A similar effect is manifested for (S,), (4.9)-(4. lo), i.e. branching out 
from the curve for conservative solute at small t/t,, and the general decrease of the 
spreading rate in comparison to the conservative case at large t / t ,  (figures 3c, e). 

The nonlinearity in ( R , )  is a typical kinetic effect (figure 3b)  that is more 
pronounced for decreasing sorption rates, k,  t,, and increasing partition coefficient, Kd. 
The nonlinearity in (Sll) (figure 3c)  and in (S,,) = ( S 3 3 )  (figure 3e)  is due to coupled 
non-Fickian and kinetic effects. The non-zero skewness is an indicator of non- 
equilibrium (kinetic) effects since ( X i 3 )  = 0 (figure 3d) .  Although for the illustrated 
curves skewness is positive, for decreasing k,  t,  nd Kd, skewness attains negative values 
(see figure 4b). 

Asymptotic results 
The expressions for the spatial and temporal moments depend on three parameters 

of significance : a timescale characterizing heterogeneity, t, = I /  U,  a reaction timescale, 
t, = (k,  R)-', and the partition coefficient, Kd (or R = 1 + Kd). Various asymptotic 
limits of interest may be obtained depending on the ratio t,/t,, and on the timescale of 
the transport problem, t / thl  or t/t,, where t is the time elapsed from the onset of 
transport of a solute body injected instantaneously at t = t, = 0. Herein we discuss two 
such limits: 

(i) Non-equilibrium, Fickian regime. We consider first the case where the timescale of 
the problem is much larger than the heterogeneity timescale, i.e. t / t ,  9 1 ,  whereas 
t / t ,  = 0(1), implying t,/t, 9 1. These conditions indicate Fickian transport for non- 
reactive solute (Dagan 1984), with kinetically controlled reactions. The appropriate 
expressions of the spatial moments are obtained from (6.2) as 

XI, + 2 1 2 4  t'; X,, = X,, --f t I z ~ 2 y  for t' = t / t ,  + 00. (6.4) 

Substitution of (6.4) into (4.5) and (4.7)-(4.11) yields 

M / M ,  = r,; (R,) = ur,/r,; (6.5a, b) 

(Sll)+ U 2 ( - - - ) + 2 ~ ; I ( R l ) ;  r, r; (Sij)++12ng (i,j  = 2,3); (6.5c, d )  ro r: 

(s,,,) = U 3  (2 -+2>-3'- r2 r; r; " ) + 6 c ~ g I U ' ( 2 - - 2 ) ,  

where for simplicity we have set Ri(0) = Sij(0) = 0 (i, j = 1,2,3). 
The first term on the right-hand side of (S,,) in (6.5) is due to reaction 

whereas the second term is related to heterogeneity, and is identical to 

(6.5e) 

kinetics, 
the one 

prevailing for conservative solute with the mean &placement defined by (R,) in (6.5), 
rather than being Ut. Furthermore, by the scaling (S,,)/U2tt,", this dimensionless 
function is a sum of two terms: the first-one depends on Kd and t/t,, while the second 
is a function of t / t ,  and Kd multiplied by l/s,,  where E ,  = Ut,/cT$I = th; E ,  is a 
relevant dimensionless number quantifying the ratio between a reaction typical length 
Ut,, and the longitudinal effective dispersivity for a conservative solute, aL = CT$ I ,  
evaluated from aL = (1 /2U)  (dXll/dt). For kinetically controlled transport, l / e ,  < 1 ,  
and the first term is dominant. (Sll)/Uztt," obtained from (6.5) is illustrated in figure 
4(a)  for different values of E ,  and Kd. A decomposition similar to that for (Sl l ) /Uzt t ,"  
is valid for (S l l l ) /U3 t : ;  skewness defined as (Sll,)/(Sll)~ is illustrated in figure 4(b)  
as a function of t / t ,  for a few values of Kd and E,. The change of sign in skewness for 
increasing E ,  is due to the gradual shift of solute mass into the tail part of y (figure 2a). 

(ii) Equilibrium regime. If the timescale of the transport problem is much larger 
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FIGURE 4. Expected values of asymptotic spatial moments (6.5) with a& = 1 : (a) second-order 
longitudinal moment, and (b) coefficient of skewness. 

than the reaction timescale, i.e. t" = t / t ,  + 1 ,  equilibrium will prevail. With neglect of 
terms O(eP") in (6.3) we get 

1 r, 2 ~ ,  t" r, K~ t"2 

R' tr R2 R2' t,  R3 R3 
r,, + - . - --f ~ + - * +- - t" + - + const; 

f 3  

R4 
12Kd t"2 + - + const. 

r3 12Kd(Kd - 2) 
t" + - - 

tr 3' R4 R4 

(6.6 a-c) 

(6.6d) 

Substituting (6.6) into (4.5) and (4.7)-(4.10) yields 

2K, U 2  
(SlJ +k,R3 t+Xl l ( t / r ) ;  (S i j )+Xi j ( t /R )  ( i , j  = 2 '3 ) ;  (6.7d, e )  

and where the skewness coefficient (Slll)/(Sll)~ converges to zero as t-i. 
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FIGURE 5. Expected value of effective (apparent) dispersivity evaluated using (Sll) in (4.10), for 
different 6, = Ut,/o$ I = U/Rk,  u$ I and K, = k,/k,, and with CT; = 1 .  

The equilibrium relationships (6.7) specify that Kd Mo of the initial mass is sorbed, 
and that the solute-body centroid is retarded by 1 / R  relative to the fluid. Similarly, the 
heterogeneity-induced second spatial moment in (6.7) is obtained from that of a 
conservative solute by replacing t with the retarded time t / R .  

It is appropriate to adopt in this case the dimensionless variable t* = t / t ,  R = tU/RZ 
as the independent one. We may rewrite (6.7) in a dimensionless form as 

(6.8 a, b) 

(6.8 c) 

where X i j  = Xi j /g$  I 2  and cr = Ut,/cr$ I. For transport dominated by heterogeneity, 
cr < 1. This point becomes clearer if we consider in (6.8) the Fickian limit, i.e. 
t* = tU/RI+ co. Substitution of (6.4) into (6.8) yields 

An apparent (effective) longitudinal dispersivity may be defined as 

U; = ( S , , )  R/2tU 
(Dagan 1984). We then have from (6.9) 

(6.10) 

This simple expression relates the asymptotic effective dispersivity for conservative 
solute, aL = a$ I ,  to the one prevailing in reactive solute transport under equilibrium 
conditions, the effects being additive. 

The apparent dispersivity (S l , )R/2 tU (with ( S , , )  defined in (4.10)) is illustrated 
in figure 5 as a function of tU/IR for different values of er and Kd. For Kd = 1, the 
apparent dispersivity increases monotonically to its asymptotic value given by (6. lo), 
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similarly as for the non-reactive case (Dagan 1984). In comparison, for larger 
partitioning coefficient (Kd = 5) ,  the apparent dispersivity attains a peak value during 
early time and then decreases to its asymptotic value given by (6.10). 

6.2. Temporal moments 

Assuming a travel time p.d.f. g ,  based on non-reactive temporal moments, the expected 
reactive solute flux at fixed locations was analysed by Cvetkovic & Shapiro (1990). 
Reactive temporal moments were analysed based on Monte Carlo simulation of two- 
dimensional porous media and using y (5.5) in Selroos & Cvetkovic (1992). The focus 
here is on the analytical expressions for reactive temporal moments in the Fickian limit. 

The non-reactive first two temporal moments for large x’ = x , / l  are defined as 
(Shapiro & Cvetkovic 1988; Dagan et al. 1992) 

( 7 )  = x l n / K G J =  X J U ;  a: = 2n$Ix l /U2  for x’ = x l / I +  GO. (6.11) 
The first three temporal moments for sorptive solute can be evaluated provided that 

a particular form of g,  is hypothesized using (6.1 1) .  For the purpose of this discussion, 
we assume an inverse-Gaussian p.d.f. g ,  (Shapiro & Cvetkovic 1988) the Laplace 

(6.12) transform of which is g,(s) = exp [A’x, - x , (A ’~  + s~”);], 

where A’ = x1/((7)  U3a,2) and A” = 2x,/( U3a,2), with ( 7 )  and a: defined in (6.1 1 ) .  The 
inverse-Gaussian distribution for travel time is consistent with a diffusion process 
(Simmons 1982). The expected values of the first three central temporal moments for 
reactive solute ( T ) ,  a; and vT respectively, are evaluated using (5 .5) ,  (6.12), and (B 1 )  
and (B 2) of Appendix B, as 

(6.1 3 a, b )  

( 6 . 1 3 ~ )  

The first three temporal moments (6.13) are all linear functions of the distance, in 
contrast to the first three spatial moments, which are nonlinear functions of time 
(figures 3 b and 4). Large 6, implies strong kinetic effects that result in large asymmetry 
in the solute breakthrough which is quantified by vT (6.13 c). This indicates the so- 
called ‘tailing’ phenomenon that is a typical kinetic effect where small amounts of 
solute are discharged into the advecting fluid (mobile region) from the immobile 
regions over prolonged periods of time; such effects have frequently been observed in 
both laboratory and field experiments (Weber et al. 1991). 

6.3. Comparison with field data 
Experimental data on field-scale transport of sorptive solute that is sufficiently detailed 
for moment analysis, is limited. At the Borden field site, Ontario, Canada, five 
halogenated hydrocarbons were injected as reactive (sorptive) tracers into the aquifer 
(with U = 0.09 m day-’), and their movement was monitored for a period of two years. 
Only the zero-order and the first moments of the Borden field experiment are available 
in the literature. Data for the zero-order moment and the first moment for two 
hydrocarbons (bromoform (BROM) and 1,2-dichlorobenzene (DCB)) are illustrated in 
figure 6, taken from Roberts et al. (1986). Figure 6 depicts the decrease of mobile solute 
mass with time due to immobilization, and is consistent with the type of curve given 
in figure 3(a). The nonlinear increase with time of the plume centroid position for the 
two hydrocarbons (figure 6b)  resembles the curves of figure 3(b). The similarity 
between curves in figures 6 ( a )  and 3(a), and figures 6(b)  and 3(b) indicates that the 
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FIGURE 6. Field data from BROM and DCB from the Borden field experiment (from Roberts et al. 
1986), and comparison with fitted curves obtained using the model of $5.1 modified into the two-site 
sorption model with U = 0.09 m day-l: (a) zero-order moment, and (b )  first-order moment. 

prevailing sorption processes for BROM and DCB monitored in the Borden aquifer 
are qualitatively consistent with the first-order rate sorption model (5.3). 

Recently, Ptacek & Gillham (1992) reported data on sorption parameters from 
small-scale experiments on samples from the Borden aquifer. Their analysis showed 
that the so-called two-site linear sorption model (e.g. Cameron & Klute 1977) most 
closely reproduces the sorption processes for the five hydrocarbons injected in the 
Borden aquifer. The two-site sorption of hydrophobic organic compounds such as 
BROM and DCB, is viewed as being controlled by an initial rapid reaction at the 
sorbent surface followed by diffusion into organic matter to additional sorption sites. 
The total reaction is thus a result of simultaneous equilibrium (fast) sorption quantified 
by a retardation factor Re, and non-equilibrium (slow, diffusion-controlled) sorption 
characterized by rate coefficients, k: and k t .  
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The linear sorption model of $5.1 is readily extended to a two-site model by 
redefining the coefficients in (5.3) as k ,  = k: /R,  and k ,  = k t  (Lassey 1988; Destouni 
& Cvetkovic 1991) and by evaluating T from d ~ / d x ,  = Re K(X,, 7,Q rather than from 
(3.1). The parameters k:, k,* and Re were chosen (with k,  = 0 since no evidence of 
degradation has been reported) such as to provide a reasonable fit with the measured 
data (figure 6): kT = 0.001 day-' and k l  = 0.004 day-' and Re = 2 for BROM, and 
k: = 0.005 day-' and k,* = 0.0005 day-' and Re = 5 for DCB. In view of the relatively 
large 95 YO confidence interval for the zero-order-moment data, particularly at early 
time (Ptacek & Gillham 1992) the curves in figure 6 closely resemble the measured data. 
More data than those available from the Borden experiment is required, however, for 
a proper verification of the linear sorption model (5.3). It may be noted that the 
sorption parameters estimated in figure 6 differ significantly from those estimated in 
small-scale experiments by Ptacek & Gillham (1992). The small-scale data are 
consistent with the field-scale data only during the first month (Ptacek & Gillham 
1992), whereas the field-scale data in figure 6 are for the entire monitoring period of 
two years. 

7. Discussion of results and conclusions 
Transport of a passive scalar by steady random velocity in a heterogeneous 

formation has been previously analysed using the Lagrangian framework (e.g. Dagan 
1984, 1991). For a statistically stationary velocity field of uniform mean and under 
ergodic conditions, the solute-body centroid moves at the constant speed U, whereas 
its second-order spatial moments increase with time. Neglecting the effect of pore-scale 
dispersion, the growth of the transverse moments is limited and results from the 
winding of the streamlines in space. The longitudinal moment grows indefinitely due 
to the variation of the velocity among streamtubes. With th = I / U  being the 
heterogeneity characteristic time, and for tit, % 1, where t is the transport time, the 
longitudinal second moment grows linearly in time. In the asymptotic stage, the 
longitudinal effective dispersion coefficient is constant and the effective dispersivity, tlL, 

obtained by division by U, is at first order equal to a$ I. 
Similar results were obtained from the analysis of solute flux through a fixed control 

plane at say x1 (Shapiro & Cvetkovic 1988; Dagan et al. 1992). The breakthrough 
curve is characterized by an average passage (travel) time ( 7 )  = xl/U. The temporal 
variance grows linearly with x1 for x,/I+ 1 and is given at first-order by 

The main objective of the present study is to generalize these results to transport of 
a reactive solute that is sorbed reversibly by an immobile phase (soil aggregates, 
stagnant zones, rock matrix) while being advected by the fluid (mobile phase). 

In principle, the Lagrangian framework is not suitable for the analysis of transport 
of sorptive solute since sorption immobilizes part of the solute particle mass and thus 
particles do not move as indivisible entities. By an appropriate nonlinear trans- 
formation, however, the transport equation is reduced to that of one-dimensional flow 
of unit velocity along streamlines (equation (3.10)). For such a case, a number of 
solutions are available in the literature that can readily be incorporated into the 
Lagrangian framework. The effect of sorption upon solute concentration in the mobile 
phase is manifested in the existence of a wake of solute trailing behind the solute 
particle. This wake, represented qualitatively in figure 2, is confined to the streamtubes 
of the fluid flow, no mechanism of transverse exchange being present. 

The presence of pore-scale dispersion may have a significant effect upon the local 

0-0 = 2 1 4  xl/ u2. 



212 V. Cvetkovic and G.  Dagan 

concentration C(x,  t ) .  Indeed, the convective mechanism results in the separation of the 
solute plume into parcels that move quicker than the mean through zones of higher 
permeability, with the opposite occurring in low-conductivity regions. In the absence 
of diffusion mechanisms and for a conservative solute, the concentration stays equal to 
its initial value. Since the lengthscale of solute parcels is the heterogeneity scale Z, the 
pore-scale dispersion becomes effective in reducing local concentrations at t - 12/D, .  
However, this effect is negligible upon the longitudinal spatial or temporal moments of 
the entire plume, which are dominated by the spread of the parcels in space (for a 
discussion see Dagan 1989, Section 4.6). Pore-scale dispersion may affect more 
significantly the transverse spatial moments of the plume, since the convective 
mechanism leads to modest lateral growth (the plume tends to a constant second 
moment in three-dimensional flow and grows logarithmically with time in two- 
dimensional flow). Hence, for t - f&/D, , ,  where I ,  is the initial lateral dimension of the 
plume and D,, is the coefficient of transverse pore-sc ile dispersion, the plume lateral 
moments are affected by pore-scale dispersion. Owing to the smallness of DdT,  and to 
the ergodic plumes considered in the present study (large f,/Z), the above timescale is 
very large, beyond the range of interest in most applications. 

The general results are illustrated for the case of linear kinetics with constant rate 
coefficients k ,  and k,. The process is characterized by the reaction time t ,  = (k,R)-l 
and the distribution coefficient Kd = k, /k , .  While closed-form solutions are presented 
for spatial and temporal moments, the nature of the transport process is apparent in 
the asymptotic limits. For t / t ,  + 1, the solute behaves like a passive tracer, as 
demonstrated by expansions in (6.3). 

An interesting limit is t / t ,  % 1 for which equilibrium is reached between phases in a 
batch experiment. In the spatial analysis, there is a partition of constant ratio Kd 
between the sorbed solute mass and the mass in the fluid (equation (6.7)). In contrast, 
the entire mass passes eventually through any control plane in the solute flux analysis. 
Under ergodic conditions, the solute-body centroid moves with constant retarded 
speed U / R ,  (6.7), and, similarly, the mean passage time is delayed by R = 1 + K, 
((6.13), valid for any x,). The spatial transverse moments are identical to those pertinent 
to a conservative solute, apart from the retardation which differs by a factor R (6.7). 
The longitudinal second spatial moment, (6.7), consists of two terms. The first one is 
entirely related to sorption and prevails for uniform flow; it encapsulates the effect of 
the reactive trailing wake that is absent in the case of passive tracers. The second term 
is identical to the advective term retarded by R, (6.7). Hence for a fixed time, the first 
term augments dispersion whereas second one diminishes it. 

The simplest asymptotic results are achieved for both t / t ,  % 1 and t / t ,  % 1, while the 
important dimensionless number e, = Ut, /g$  I represents the relative impact of 
sorption and spatial heterogeneity. Under these limits, the longitudinal effective 
dispersivity obtained from the division of the dispersion coefficient by the retarded 
uefocity, consists of the aforementioned two terms : the advective one is the same as for 
a passive scalar, whereas the sorptive one is proportional to er, (6.10). Thus a snapshot 
of the solute body at a fixed transport distance shows increased longitudinal spread for 
a reactive solute. Similar additive effects of sorption and heterogeneity are displayed by 
the temporal moments, (6.13). 

At intermediate transport times or distances to the control plane, the process evolves 
from the first to the last limit in a complex manner as illustrated in figures 3 and 4. 
Although comprehensive data from field tests for moment analysis of reactive solute 
have yet to be collected, qualitative agreement has been found for the zero- and first- 
order spatial moments of the Border field experiment. 
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The analysis has focused on transport in porous heterogeneous formations. Its 
general part, however, is applicable to other similar processes with advection by steady 
random velocity fields. Several problems remain to be investigated in the future. For 
instance, the expressions for the spatial and temporal moments for non-ergodic 
conditions, similar to those discussed for non-reactive solute (Dagan 1991), are of 
particular interest. Furthermore, the extension of results to consider nonlinear sorption 
reactions, and other types of chemical reactions in porous media, is to be considered 
in the future. 

The authors wish to thank an anonymous reviewer for thoughtful comments that 
have helped to improve the original version of the manuscript. 

Appendix A 
The I’-functions (4.4) for first-order linear sorption may be evaluated as 

where f is the Laplace transform of y over 7 defined as 

f(s, t )  = J: ecS7y(7, t )  d7 (A 2) 

with y given in (5.5). Noting that y (5.5) is the solution of (5.3) for instantaneous 
injection of unit mass (i.e. for y(0, t) = C(0, t)/C, At, = 8(t)), we apply the Laplace 
transform operator over 7 on (5.3) (with k,  = 0) to obtain the following system of 
differential equations : 

-k, i ’  (A 3) 
kz )if} &if] = ( - ( s + k + k , )  

dt d kl 
subject to y(s, 0) = 1 and 8(s, 0) = 0, where 0 = N/Co Ato. The solution of (A 3) for .i, 
is 

y(s, t) = El exp (- a1 t )  -E, exp (- a2 t), 
where 

(A 4) 
El = (k ,  + %)/(% - 4, E, = (k, +a,>/(% - a,) 

C Z ~ ,  = -$(# + k ,  R + k,) f ;((s + k,) + 2k,(s + k,) (Kd - 1 )  + k: R2)t 
with R = 1 +Kd and Kd = k, /k , .  Inserting (A 4) into (A I ) ,  T P ( p  = 0 ,1 ,2 ,3 )  are 
evaluated as (6 .3)  after setting k, = 0 and normalizing with t, = (k ,R)- l .  

Appendix B 
The pth-order A-function (4.14) is evaluated as 

(B 1) 
dp 

Ap(x,> = t”<y> dt = (- 1)”dsp9[(<Y)) l  I s = w  II: 
where 9 ( ( y ) )  = j e ~ “ ( y )  dt is the Laplace transform of (7). Furthermore, we may 
write 

00 

s ( < y ) )  <f) = y(s,7>gi(7)d7. (B 2)  

The Laplace transform of g, is g,(s) = sePs7gl d7; substituting f ,  (5.4), into (B 2) we see 
that 

i.e. s’ = s[ 1 + W(s)]. Equation (B 3 )  implies that if the non-reactive travel time p.d.f., g, ,  
2 ( < y ) )  = 2l(f? = gl{s[1 + W(s>l>, (B 3 )  
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is known, and a particular W(s) is assumed, then the reactive temporal moments may 
be evaluated using (B 1) and (B 3) without explicit knowledge of y. A result analogous 
to (B 3) has been obtained by Villermaux (1974) for steady-state flow in a set of parallel 
tubes of constant radius; equation (B 3) is a generalization of this result to arbitrary 
steady-state flow fields. 
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